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Abstract Several different pseudospectral methods of solution of the Schrödinger
equation are applied to the calculation of the eigenvalues of the Morse potential for
I2 and the Cahill–Parsegian potential for Ar2 [Cahill, Parsegian, J. Chem. Phys. 121,
10839 (2004)]. The calculation of the eigenvalues for the Woods–Saxon potential are
also considered. The convergence of the eigenvalues with a quadrature discretization
method is found to be very fast owing to the judicious choice for the weight function,
basis set and quadrature points. The weight function used is either related to the exact
ground state wavefunction, if known, or an approximation to it from some reference
potential. We compare several different pseudospectral methods.

Keywords Pseudospectral · Schroedinger equation · Morse potential · Woods–Saxon
potential

1 Introduction

There has been an ongoing effort by numerous researchers to develop accurate and
efficient algorithms for the calculation of the eigenvalues of the one dimensional
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Schrödinger equation for several different potentials. Although these one dimen-
sional calculations are not computationally intensive, their improvement will find
useful application to multidimensional problems. Examples of this research endeavor
are the papers by Simos and coworkers that are concerned with either higher order
algebraic methods [1], and direct integrations with a Numerov [2], Runge-Kutta [3,4]
or symplectic methods [5,6]. Other methods include a Ricatti-Pade approach [7], a
Chebyshev–Lanczos method [8] and a Hill determinant method [9] to mention just
a few. Other references to similar studies were provided in previous papers [10,11].
Pseudospectral methods include the quadrature discretization method [10,12,13], the
discrete variable representation [14], and the Lagrange mesh method [15–17]. Other
pseudospectral methods based on classical bases have also been discussed by Taşeli
and coworkers [18,19].

The pseudospectral methods evaluate the eigenfunctions on a grid of points which
coincide with the quadrature points for the weight function chosen. The diagonalization
of the discrete matrix representative of the Hamiltonian of dimension N 2 gives N
eigenvalues of which a subset corresponds to the discrete eigenvalues for the problem.
The spectral convergence of the eigenvalues refers to the exponential decrease of
the error in the approximate eigenvalues versus N . Spectral convergence has been
demonstrated recently by Lo and Shizgal [20] for several one dimensional problems.
The present paper is a continuation of these earlier studies but we here consider a
shift and scaling of the quadrature points which we demonstrate can accelerate the
convergence.

Shizgal and coworkers [13,20,21] have demonstrated that rapid convergence of the
eigenvalues of the Fokker–Planck equation can be obtained with a basis set defined
by the equilibrium probability density as the weight function. The Fokker–Planck
equation can be transformed to a Schrödinger equation with a potential such that the
Hamiltonian belongs to the class of supersymmetric quantum mechanics for which the
ground state is known [12]. Chen and Shizgal [10] and Lo and Shizgal [20] obtained
rapid convergence of the eigenvalues of the Hamiltonian operator when the square of
the ground-state eigenfunction is used for the weight function. Occasionally modifi-
cations of these weight functions are still required to improve convergence [10,20]. In
most applications, such nonclassical basis sets were used. This method is referred to as
the quadrature discretization method (QDM) since it is implemented as a pseudospec-
tral (collocation) method. The QDM is generally based on quadrature points defined
by nonclassical polynomials orthogonal with respect to a specific weight function.

There has been a long history of the application of numerical pseudospectral meth-
ods [22,23]. Shizgal [24] developed a pseudospectral method based on a Gaussian
quadrature to accurately discretize the integral operator in the Boltzmann equation.
By contrast, the calculation of the matrix elements of the Boltzmann collision operator
in the basis set can lead to considerable round-off errors [25]. Shizgal and Blackmore
[26] then applied this method to the solution of differential equations. The approach
follows on previous works employing similar methods in neutron transport [27]. The
QDM has been used to solve the time dependent Fokker–Planck equation [13,28],
the Poisson equation [11], the advection-diffusion equation [29], and the Schrödinger
equation [10,12,20].
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An alternate method developed by Light and coworkers [14,30,31], which is
referred to as the discrete variable representation (DVR), was originally based on
the numerical evaluation of matrix elements of the potential in the Schrödinger equa-
tion [32,33]. If V (x) is the potential in a one-dimensional Schrödinger equation, then
the matrix elements of V (x) can be determined with a Gaussian quadrature, that is,

Vmn =
b∫

a

φm(x)V (x)φn(x) dx ≈
N∑

k=1

ηkφm(xk)V (xk)φn(xk), (1)

where {φn} is a set of orthonormal basis functions, and {xk} and {ηk} are appropriate sets
of quadrature points and weights, respectively [34]. The DVR is also a pseudospectral
method in which the solution is evaluated at a set of grid points analogous to the QDM.
The DVR was thus introduced by Light et al. [30,31] and applied to several quantum
problems [14,35–38].

We consider a set of polynomials Pn(x) orthogonal with respect to a weight function
w(x),

∫

R

w(x)Pm(x)Pn(x) dx = δmn,

where R denotes the domain for x . With wk = ηkw(xk), there is a unitary transfor-
mation, Tkn = √

wk Pn−1(xk), between the representation of a function in a basis set
(that is the coefficients cn in ψ(x) = ∑

n cnφn(x) with φn(x) = √
w(x)Pn−1(x)) and

the discrete representation, ψ(xk). The transformation of Vmn , Eq. 1, with T gives the
diagonal representation of the potential in the discrete representation, that is, V (xk).
Further details are provided in [12,13,28] and Sect. 2.

Thus the QDM was developed originally for kinetic theory problems whereas the
DVR was introduced for the accurate evaluation of potential matrix elements. In Sect.
2, we briefly explain the variational principle and spectral convergence. Section 3
discusses the formulation of the pseudospectral method and the differences between
QDM and DVR. Several applications are presented in Sects. 4–6 with discussions of
results in 7.

2 Spectral convergence

The solution of the Schrödinger equation

Hψ = − h̄2

2µ

d2ψ

dx2 + Vψ = Eψ,

is generally considered with the expansion of the eigenfunctions in a basis set,

ψ(x) ≈ √
w(x)

N∑
n=1

cn Pn−1(x). (2)
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The matrix representation of the Hamiltonian in this basis set is Hmn = (h̄2/2µ)Kmn+
Vmn , where

Kmn = −
∫

R

√
w(x)Pm−1(x)

d2

dx2

[√
w(x)Pn−1(x)

]
dx, (3a)

Vmn =
∫

R

w(x)Pm−1(x)V (x)Pn−1(x) dx . (3b)

The expansion coefficients cn in Eq. 2 can be considered as linear variational para-
meters. The extremum of

∫
R ψ(x)Hψ(x) dx/

∫
R ψ(x)ψ(x) dx with respect to cn is

equivalent to the diagonalization of the finite matrix Hmn [39]. Thus, we can refer to
this basis set as the variational basis representation (VBR) as proposed by Light et al.
[31]. The eigenvalue estimates converge monotonically to the exact eigenvalues from
above. Spectral convergence refers to the exponential decrease of the coefficients cn

versus n as shown in Fig. 2 and in Fig. 6 of [20].

3 Pseudospectral method

Pseudospectral methods were popularized by researchers interested in the numerical
solution of problems in fluid dynamics [22,23]. The set of polynomials orthogonal
with respect to a chosen weight function,w(x) can be generated with the algorithm as
described elsewhere [27,40]. These polynomials define the quadrature points xk and
weights wk for the quadrature rule

∫

R

w(x) f (x) dx ≈
N∑

k=1

wk f (xk). (4)

If the coefficients cn in Eq. 2 are evaluated with the quadrature rule in Eq. 4, the
expansion of ψ(x) is written as

ψ(x) ≈
N∑

k=1

Ik(x)

√
w(x)

w(xk)
ψ(xk),

where the interpolating polynomial, Ik(x), is given by

Ik(x) = wk

N∑
n=1

Pn−1(xk)Pn−1(x),

and Ik(x j ) = δ jk satisfies the cardinality. The expansion of ψ(x) in terms of normal-
ized interpolating functions as basis functions was discussed by Baye and coworkers
[15,17], and is referred to as a Lagrange mesh.
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The QDM considers the symmetric kinetic energy matrix elements that results from
an integration by parts, that is,

Kmn =
∫

R

d

dx

[√
w(x)Pm−1(x)

] d

dx

[√
w(x)Pn−1(x)

]
dx,

provided that the boundary term vanishes. After the derivatives are evaluated and one
of the cross terms is integrated by parts, Kmn can be written as

Kmn =
∫

R

w(x)P ′
m−1(x)P

′
n−1(x) dx −

∫

R

w(x)Pm−1(x)Ṽ (x)Pn−1(x) dx,

where

Ṽ (x) = 1

2

w′′(x)
w(x)

− 1

4

[
w′(x)
w(x)

]2

is a reference potential [12]. The Hamiltonian matrix is therefore

Hmn = h̄2

2µ

∫

R

w(x)P ′
m−1(x)P

′
n−1(x) dx

+
∫

R

w(x)Pm−1(x)

[
V (x)− h̄2

2µ
Ṽ (x)

]
Pn−1(x) dx . (5)

As shown elsewhere [10,12], the discrete representation of the Hamiltonian is obtained
with Hmn and the transformation T and we have that

HQDM
i j = h̄2

2µ

N∑
k=1

Dki Dkj +
[

V (xi )− h̄2

2µ
Ṽ (xi )

]
δi j , (6)

where

Di j = √
wiw j

N∑
n=1

P ′
n−1(xi )Pn−1(x j ),

is the discrete representation of the first derivative operator. Szalay [38] has pro-
vided explicit formulas for Di j = ∫

R w(x)Pi (x)P ′
j (x) dx and

∑N
k=1 Dki Dkj =∫

R w(x)P ′
i (x)P ′

j (x) dx where Pi (x) = w
−1/2
i Ii (x) (Table 2 of [38]).

For the QDM, the reference potential, Ṽ (x), written in terms of the weight function
forms an important aspect of the development. Ifw(x) can be chosen such that V (x) ≡
(h̄2/2µ)Ṽ (x), the discrete representation of the Hamiltonian reduces to HQDM

i j =
(h̄2/2µ)

∑N
k=1 Dki Dkj , and is calculated exactly with the quadrature. Thus, the QDM
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preserves the variational aspects of the VBR. By contrast, applications with the DVR
can lead to errors arising from the inexactness of the quadrature, Eq. 1, and “ghost”
levels have been reported [41,42]. There is a class of Schrödinger equations that are
isospectral with equivalent Fokker–Planck equations [12,43]. The eigenfunction of the
Fokker–Planck equation with zero eigenvalue is the equilibrium distribution function
which is known, Peq(x) = exp

(− ∫ x W (x ′) dx ′). For these problems, the ground-state
of the Schrödinger equation isψ0(x) = √

Peq(x). The function W is the superpotential
in supersymmetric quantum mechanics [12,44]. If there is no convenient choice for
w(x) such that V (x) = (h̄2/2µ)Ṽ (x), one can choose a w(x) so that (h̄2/2µ)Ṽ (x)
is close to V (x).

It has been shown [16] that scaling and translating of x can often improve the
convergence of the eigenvalues. The scaled and translated Hamiltonian is given by

HQDM
i j = h̄2

2µ

1

s2

N∑
k=1

Dki Dkj +
[

V (sxi + b)− h̄2

2µ

1

s2 Ṽ (xi )

]
δi j , (7)

where xi has been multiplied by the scaling factor s and translated by b.

4 The vibrational states of the Morse oscillator

The Morse potential for I2 has been well studied [8,17,20,45]. The potential is defined
by

VMorse(x) = De
[
1 − exp(−α(x − xe))

]2 − D, (8)

where De = 0.0224, D = 0, α = 0.9374, xe = 0, h̄2 = 1, µ = 119406, and
x ∈ (−∞,∞), all in atomic units. The exact eigenvalues are given by

Eexact
m = h̄2

2µ
α2

(
m + 1

2

)(
2

α

√
2µ

h̄2 De −
(

m + 1

2

))
− D, (9)

for 0 ≤ m ≤ 77. The ground state eigenfunction is

ψMorse
0 (x) = exp

[
−

√
2µ

h̄2 De

(
x − xe + exp(−α(x − xe))

α

)
+ α(x − xe)

2

]
.

The Morse potential belongs to the family of shape invariant potentials of supersym-
metric quantum mechanics [44]. If the weight function for the polynomial expan-
sion is chosen to be w(x) = [ψMorse

0 (x)]2, the effective potential in Eq. 6 is simply
(h̄2/2µ)Ṽ (xi ) = VMorse(xi )−E0. With this choice of weight function, the discrete rep-
resentation of the Hamiltonian, Eq. 6, reduces to HQDM

i j = (h̄2/2µ)
∑N

k=1 Dki Dkj +
E0δi j .
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With scaling s and translation b, the QDM representation of the Hamiltonian is
given by Eq. 7, where V (sxi + b) = VMorse(sxi + b). This scaling and translation of
the grid points was not used in [20].

The QDM is almost always considered with nonclassical polynomials, whereas the
DVR approach often uses classical bases (Fourier, Hermite, Laguerre, etc.). It is this
different choice of basis set that distinguishes the two methods. Thus a typical DVR
approach to this problem is to choose a classical polynomial basis such as Hermite
polynomials. The DVR representation of the discrete Hamiltonian is

HHerm
i j = h̄2

2µ

1

s2 K Herm
i j + VMorse(sxi + b)δi j , (10a)

with the kinetic energy operator

K Herm
i j = −

{
δi j

[
−2(N − 1)

3
− 1

2
+ x2

i

3

]
+ (1 − δi j )

[
1

2
− 2

(xi − x j )2

]}
. (10b)

reported by Szalay [38]. Thus it is clear that the QDM and the DVR are pseudospectral
methods of solution of the Schrödinger equation but are based on different weight
functions and quadrature points. A comparison of the application of both methods to
this system is presented in Sect. 7.

5 The vibrational states of Ar2

The Cahill and Parsegian Ar2 potential [46]

V (x) = a exp(−bx)(1 − cx)− d

x6 + ex−6 , (11)

where x ∈ [0,∞) is the radial coordinate in Å and V (x) in eV. The parameters in
Eq. 11 are a = 1, 720 eV, b = 2.6920 Å−1, c = 0.2631 Å−1, d = 37.943 eV Å6,
e = 177,588 Å12, h̄2 = 0.0041801588 eV u Å2, and µ = 20 u. This potential has
eight bound states. The weight function is chosen by approximating this potential
with a Morse potential in Eq. 8 such that the x-intercept and the minimum of the
well coincides with Eq. 11. We thus get the parameters De = 0.01239309488 eV,
D = De, α = 1.685967091 Å−1, and xe = 3.761961562 Å. The weight function
is thus w(x) = [ψMorse(x)]2 defined on x ∈ [0,∞). With this weight function, the
QDM representation of the Hamiltonian is given by Eq. 7, where (h̄2/2µ)Ṽ (xi ) =
VMorse(xi )+ D − α

√
Deh̄2/2µ+ (h̄2/2µ)(α2/4).

For the DVR, the classical Laguerre polynomials defined on x ∈ [0,∞) and orthog-
onal with respect to w(x) = x2 exp(−x) are used. The Hamiltonian in the Laguerre
basis is given by

HLag
i j = h̄2

2µ

1

s2 K Lag
i j + V (sxi + b)δi j , (12a)
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where the discrete symmetric matrix representative of the kinetic energy is given by
[15]

K Lag
i j =

{
9/4x2

i + Sii if i = j,

(−1)i− j [(3/2)(xi x j )
−1/2(x−1

i + x−1
j )+ Si j ] if i �= j.

(12b)

and

Si j = √
xi x j

N∑
k=1,k �=i, j

1

xk(xk − xi )(xk − x j )
. (12c)

6 Woods–Saxon potential

As a third sample problem, we also consider the calculation of the bound states of the
Woods–Saxon potential which is defined by

V (x) = u0

1 + t
− u0t

a0(1 + t)2

where t = exp((x − xe)/a0), u0 = −50, xe = 7, a0 = 0.6, h̄2 = 1, µ = 0.5, and
x ∈ [0,∞). This potential has been considered by Simos [47] with an improved finite
difference scheme, by Wang [48,49] using an improved Numerov method, and by
Zakrzewski [50] using a power series method. Since this potential has a shape close
to the square well potential

Vsq(x) =
{

u0 if 0 ≤ x < L ,

0 if x ≥ L ,

with L = 6.2, we consider the square of the ground-state eigenfunction of Vsq(x) as
the weight function, i.e. w(x) = [ψ sq

0 (x)]2, where

ψ
sq
0 (x) =

{
c1 sin(c2x) if 0 ≤ x < L ,

exp(c3x) if x ≥ L ,
(13)

c1 = exp(c3L)/ sin(c2L), c2 = √
ε0 − u0, and c3 = −√−ε0. The ground-state

eigenvalue ε0 for Vsq(x) is the first root of the equation

√
ε0 − u0 cot(

√
ε0 − u0 L) = −√−ε0,

or ε0 = −49.75457960982555. The QDM representation is given by Eq. 7, where
(h̄2/2µ)Ṽ (xi ) = Vsq(xi )− ε0.
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7 Results and discussions

We have calculated the eigenvalues for the I2 potential, Eq. 8, with the diagonalization
of Eq. 7. The convergence of E10 for three different discretizations is shown in Table 1.
In the first column, the eigenvalue estimate obtained with the QDM with no translation
or scaling of the quadrature points converges monotonically to within seven significant
figures of the exact value. The underlined portions of the estimates in the table show the
converged values to five significant figures. In the second column of Table 1, we show
the improved convergence with scaling s = 1.05 although it is no longer monotonic
from above. The eigenvalue estimate exhibits a minimum versus N at N = 15. The
scaling s and translation b changes the weight function to [ψMorse

0 ((x −b)/s)]2 so that
V (x)−(h̄2/2µ)Ṽ (x) is no longer a constant, and the second integral in Eq. 5 cannot be
evaluated exactly by quadrature. Hence, the QDM representative of the Hamiltonian
in Eq. 7 is not equivalent to the basis set representation and the variational principle
no longer holds. The eigenvalues calculated with the diagonalization of the discrete
Hamiltonian in the scaled Hermite basis set, Eq. 10a, is shown in the third column
of Table 1. The eigenvalues converge nonmonotonically as well and slower than the
QDM results.

Figure 1 shows the convergence of E1, E10, E30, and E50 for the Morse potential
given by Eq. 8. The negative of the relative error, defined by

εm(N ) = log

∣∣∣∣∣
E (N )m − Eexact

m

Eexact
m

∣∣∣∣∣ ,

represents approximately the number of significant figures for E (N )m . The exact eigen-
values Eexact

m are given by Eq. 9. The QDM results for E1 without scaling shown in

Table 1 Convergence of
103 E10 for the I2 Morse
potential

Numbers are underlined when 5
significant figures are achieved

(a) QDM s = 1, b = 0;
(b) QDM s = 1.05, b = 0;
(c) Hermite s = 0.14, b = 0

N (a) (b) (c)

11 6.397074 6.432646 9.203165
12 5.929980 5.749709 6.515301
13 5.731211 5.634366 5.285059
14 5.653056 5.625372 5.229673
15 5.629265 5.623171 5.177875
16 5.624138 5.623269 5.524050
17 5.623357 5.623259 5.464870
18 5.623268 5.623260 5.615021
19 5.623260 5.619430
20 5.623601
21 5.622067
22 5.623292
23 5.623252
24 5.623235
25 5.623258
26 5.623257
27 5.623260
28 5.623259
29 5.623260
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Fig. 1 Variation of log |(E(N )m − Eexact
m )/Eexact

m | versus the number of quadrature points N for the I2
Morse potential. QDM: Eq. 7 with b = (1 − s)x1; Hermite: Eq. 10. (a): m = 1; (b): m = 10; (c): m = 30;
(d): m = 50

Fig. 1a converge much faster than the results with DVR with scaled Hermite polyno-
mials. In Fig. 1b–d, the convergence of the eigenvalues E10, E30, and E50 evaluated
with the QDM is also much faster than the DVR results with Hermite polynomials.
In order to capture the behaviour of the eigenfunctions for the higher states which
are more loosely bound, the scale factor introduced for QDM serves to expand the
computational domain. The scaling of the QDM is particularly important for E50.
The translation of the QDM grid, b = (1 − s)x1, is chosen to keep the lowest grid
point unchanged while the length of the computational domain is scaled by s, which is
optimized by trial and error. The results with Hermite polynomials are also optimized
with the values of s and b by trial and error.

The fast rate of convergence for the QDM is anticipated because the mth eigenfunc-
tionψm(x) is expanded in polynomials orthogonal with respect to the weight function
w(x) = [ψ0(x)]2. The first excited state, ψ1(x), is the simplest one to represent in
the basis set generated with this weight function, and thus we obtain the very rapid
convergence of E (N )1 , as shown in Fig. 1a.
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In Fig. 2a we show the variation of the coefficients c(m)n for the mth eigenfunction
versus n for m = 1 (triangles) and m = 10 (squares). The rapid exponential decrease
of c(1)n versus n is an illustration of spectral convergence. The QDM yields diagonally
dominant matrix representations in the polynomial basis set as discussed previously
by Lo and Shizgal [20] and thus gives the rapid spectral convergence shown in Fig. 1.

The variation of the coefficients c(m)n versus n for m = 1 and 10 in the Hermite
expansion

ψm(y) ≈ exp

(
−1

2

[
y − b

s

]2
)

N∑
n=1

c(m)n Q(s,b)
n−1 (y), (14)

where y = sx + b is the scaled and translated coordinate, is shown in Fig. 2b with
triangles and squares, respectively. In Eq. 14, Q(s,b)

n (y) = νn Hn((y − b)/s) are the
scaled and translated Hermite polynomials normalized by the constants νn . Spectral
convergence is also confirmed, but the rate of decrease of c(m)n is slower than with the
QDM. For m = 10, the spectral convergence refers to the exponential decrease in the
expansion coefficients c(10)

n versus n for n � 10 beyond the maxima shown in Fig. 2.
Figure 3 shows the convergence of the eigenvalues E0, E3, E5, and E7 for Ar2.

The potential supports 8 bound states. The exact eigenvalues, Eexact
m , used for calcu-

lating the errors are evaluated in multiple precision with a higher order method and
are assumed to be correct to at least 20 significant digits. In Fig. 3, we show that
the QDM discretization gives a very rapid convergence rate for the four eigenvalues
when appropriate scalings are used. The results for the scaled and translated Laguerre
expansion are also shown in Fig. 3. Since the eigenfunctions are concentrated in the
region of the potential well, in order to improve the convergence of the Laguerre ex-
pansion a translation of the grid points is essential. This changes the weight function to
w(y) = ((y − b)/s)2 exp(−(y − b)/s) and the computational domain to y ∈ [b,∞).
This translation redistributes the Laguerre quadrature points concentrated near x = 0
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Fig. 3 Variation of log |(E(N )m − Eexact
m )/Eexact

m | versus the number of quadrature points N for the Ar2
Cahill and Parsegian potential. QDM: Eq. 7 with b = (1 − s)x1; Laguerre: Eq. 12. (a) m = 0; (b) m = 3;
(c) m = 5; (d) m = 7

to the region of the potential well. The value of b for each state must be chosen appro-
priately such that the domain truncation error incurred by neglecting the contribution
from [0, b) is less than machine precision and the convergence rate of the eigenvalue
is nearly optimized.

For the Woods–Saxon potential, we use the ground state eigenfunction, Eq. 13,
of a square well potential as the weight function which generates the basis set and
quadrature points used in the QDM. The diagonalization of the matrix representative
of the Hamiltonian given by Eq. 7 gives approximate eigenvalues for the Woods–
Saxon potential. Because the imposed boundary conditions, ψ(0) = ψ(∞) = 0,
are the same for both the square well potential and the Woods–Saxon potential, no
translation of grid points is required, i.e. b = 0. To evaluate the accuracy of the
approximate eigenvalues we compare these with the exact numerical values reported
by Ledoux [51]. In Fig. 4, the values of s for the curves labeled with the open circles
were chosen so that εm(N ) ≈ −6 and remains more or less constant with increasing
N . We suspect that the minimum error of 10−6 which does not decrease with an
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increase in N arises from the subtraction of (h̄2/2µ)Ṽ (x), which is not continuous. If
larger values of s are chosen (filled circles), the accuracy of the eigenvalue estimates
is improved to machine precision.

8 Summary

The quadrature discretization method (QDM) was originally developed to solve the
time dependent Boltzmann and Fokker–Planck equations for the kinetic theory prob-
lems [12,13,21,24,26,28]. This motivated the concept of developing nonclassical
basis sets for different problems based on weight functions that were associated with
the equilibrium solution which is the ground state eigenfunction. The spectral conver-
gence of this large class of eigenvalue problems was found to be very rapid. The DVR
was developed from the need to calculate potential energy matrix elements numerically
and quadrature methods were adopted, analogous to applications of the Boltzmann
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equation [24,28]. The numerical implementation of the QDM and the DVR is with a
pseudospectral approach that was developed by workers in fluid mechanics [22,23]. In
the present paper, we have demonstrated that the convergence of the vibrational states
of Ar2 and I2 is accelerated with the appropriate choice of the basis set modified by
scaling and translation of the coordinate. The convergence with Hermite or Laguerre
basis functions which are often the basis sets of choice for many applications of the
DVR is generally much slower.
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